
June 1999 CROSSTALK The Journal of Defense Software Engineering 17

Software Engineering Technology

Mission-Critical and Mission-Support Software:
A Preliminary Maintenance Characterization

Elizabeth K. Bailey Clark, Software Metrics, Inc.
James A. Forbes, Logistics Management Institute

Emanuel R. Baker, Software Engineering Consultants, Inc.
Donald W. Hutcheson, Weapons Business Development, The Boeing Company

Within the Department of Defense (DoD), mission-critical software maintenance has been
reported to cost between $700 million and $20 billion annually. The wide range of esti-
mates results from uncertainty over the definitions of “mission-critical” and “software main-
tenance” as well as the lack of any catalog of performing activities. The problem is deeper
than definitions and level of investment: software maintenance process is poorly character-
ized in general. The purposes of this study1 were to undertake an initial characterization of
DoD mission-critical software maintenance in terms of its activities and processes, users and
stakeholders, amount of resources, and existing formal and informal policy; to identify pol-
icy issues; and to outline the scope and major features of potential new or revised policy.

THE PROBLEM, HOWEVER, is deeper than definitions and level
of investment.
The software maintenance process is poorly characterized in

general. Lacking an adequate characterization of software main-
tenance, there is no real basis to establish coherent policy.
Further, key software maintenance decisions—such as contract
choice or organic performance, and whether it should be
defined as depot maintenance—are largely ad hoc and reap lim-
ited benefits from the results of past decisions.

The terms “software maintenance” and “software support”
are both in use, sometimes with modifiers such as “post-produc-
tion” or “post-deployment.” To avoid confusion, we adopted the
term software maintenance and defined it to include
• Correction of defects.
• Adaptation to a new host operating environment.
• Incremental functional improvements.

This definition is generally consistent with industry usage.
Excluded from this definition are major modifications and
upgrades, the purpose of which is major functional improvement.

We found it helpful to distinguish among three categories
of mission-related software: mission-critical, embedded; mis-
sion-critical, nonembedded; and mission-support (Table 1).
Broadly speaking, different organizations may use similar
processes within a category; across categories they generally do
not.

It also is helpful to characterize software maintenance by
application area (Table 2). We gathered data on the first six
application areas of Table 2 (shaded in the right column). Given
the state of data availability and reasonable limits on study
scope, it proved impractical to assure completeness for any cate-
gory or to achieve a reasonable degree of completeness for other
than the first three.

Approach
Our study approach is illustrated in Figure 1.

We separated the research into two segments: quantitative

and qualitative. To establish the “demographics” of software
maintenance, e.g., rough order of magnitude estimates of the
code base, number of people performing, and annual cost, we
started with a database created by the Institute for Defense
Analyses for the Commission on Roles and Missions (CORM)
of the armed forces. Because it was clear from the beginning
that this database (the result of a data call to the services) had
some voids, we supplemented it with data we obtained directly
from the services. This study does not include software mainte-
nance performed by defense agencies; the decision to exclude
defense agencies was driven by the need to establish a reasonable
scope of effort for what was envisioned as primarily an
exploratory study.

To approach the more qualitative aspects, such as those that
have to do with the software maintenance process, we began
with a literature review and conducted a series of 15 semistruc-
tured interviews at eight service installations. In keeping with
the unsettled nature of software maintenance, we focused on
developing an understanding of the common norms, meanings,
values, and organizational relationships [1]. We were more

 Type Cardinal Charact erist ics Exam ples

 Em bedded • Tightly coupl ed interfaces

 • Real-tim e response requi rem ents

 • High reliability requi rem ents (life-
cr itical)

 • G enerally sever e m em ory and
throughput const raints

 • O ften execut es on speci al-purpose
hardware

 B-1 flight sof tware,
F-14 flight sof tware

 O perational ,
nonem bedded

 • M ultiple interfaces with other syst em s

 • Constrained response tim e requi rem ent

 • High reliability but not life-cr itical

 • Execut ed gener ally on com m ercial-off-the-
shel f product s (CO TS)

 C3, space syst em s

 M issi on-suppor t • Relativel y less com plex

 • Self-cont ained or few interfaces

 • Less stringent reliabi lity requi rem ent

 autom atic test ,
equipm ent test ,
program set s,
m issi on planning,
busi ness syst em s

Table 1. Software maintenance categories.

interested in discerning signposts and perspectives2 than trying
to determine “facts.” In combination, the demographics
research, literature review, and interviews permitted us to do
this by characterizing software maintenance in terms of activities
and processes, users and stakeholders, amount of effort, and
existing formal and informal policy. Policy issues flow from that
characterization.

Findings [2]
Within the scope of the study, we accounted for an estimated
16,000 government and contract persons performing software
maintenance on 278 million source lines of code (SLOC) at a
cost of $1.26 billion annually. We found that approximately 55
percent of these people were government employees, and 45
percent were contractors. Approximately 40 percent focused on
software correction, and 60 percent focused on a combination
of adaptive and incremental improvements.

Code Base
Figure 2 shows a breakout by the three high-level categories for
each service. The Navy and the Air Force have much larger code
bases than does the Army.

Although support software is the single largest category in
terms of the sheer number of SLOC, it is less costly to maintain
than the other two categories. As an indicator of the difference,
Table 3 reflects the approximate cost per SLOC per year for

three of the sites in the expanded database.
In interpreting Figure 2, remember that there are significant

reliability and validity issues with the underlying data. Although
our check of code counts reported in the CORM database
against those made available in site visits did not reveal a sys-
tematic bias, that is not the same as saying the data are known
to be valid. Because only three of the six application areas we
examined were reasonably complete, this summary is an under-
estimate even for the areas we examined. The portrayals shown
here are best characterized as approximate representations of the
relative sizes of the code bases for the categories we examined.
These caveats also apply to the labor force demographics pre-
sented and budget impact.

Personnel
Use of operations and maintenance (O&M) funds is almost
universal for software maintenance within the application areas
studied. The amount of resources is normally determined as a
level of effort rather than built up from discrete requirements.
In some organizations, the level of effort was fixed in terms of

dollars, in others by the fairly stable size of the labor force. In
either case, software maintainers addressed the backlog of
requirements to the extent resources permitted. Requirements
not satisfied in one planning period, e.g., year, were deferred to
the following period. This approach also appears to be consis-
tent with industry software maintenance practice.

Software development and maintenance are labor-intensive.
Human effort is generally recognized to be the major cost driver
[3, 4]. To estimate the number of people involved in software
maintenance, we began with the CORM database personnel
counts. Here also, we expanded the CORM database using
other data gathered during the study. To determine accuracy, we
compared, as we did with the size data, the numbers obtained
from the site visits with those in the CORM database.

The CORM database consistently underrepresented the
number of people. A comparison between the CORM and the
site visits is shown in Figure 3. If the data from the site visits
and the CORM data for the same sites were about the same, a

18 CROSSTALK The Journal of Defense Software Engineering June 1999

 Applicat ion Area Type Data Com pleteness

 W eapon syst em s Em bedded Essent ial ly
com plete

 Space cont rol Nonem bedded Essent ial ly
com plete

 Autom ated test equi pm ent Support Essent ial ly
com plete

 C3 Nonem bedded Part ial

 Syst em integrat ion labs Nonem bedded Part ial

 Sim ulat ion and trai ning Nonem bedded Part ial

 Atm ospheric sear ch Nonem bedded none

 W ar gam es and m issi on rehear sal Nonem bedded none

 Intelligence Nonem bedded none

 Business syst em s Suppor t none

 W eather Nonem bedded none

 O ther –

Table 2. Scope of DoD software maintenance.

Figure 1. Study approach.

0

50,000

100,000

150,000

200,000

250,000

300,000

O perational ,

Nonem bedded

Support Em bedded Total

Type

K
S

L
O

C

Total AF Navy Arm y

Total = 277,800 KSLO C
(thousands of lines of sour ce code)

Figure 2. Software code base by service and category.

Software Engineering Technology

linear plot of the data would have a ratio of 1-to-1 slope. The
slope is 1.96, which means that the personnel counts obtained
from the site visits were almost twice as large as those from the
CORM data call, and this was consistent for all but one of the
sites we visited. The one inconsistency was the F/A-18 Hornet
aircraft. The CORM data call reflects 30 F/A-18 personnel, all
organic, while interviews with F/A-18 software managers indi-
cate the total should be approximately 1,000 (125 organic plus
875 contractors). Since it was such an egregious error, we did
not include the F/A-18 in calculating the 1.96-to-1 site-visit-to-
CORM data ratio.

Budget Impact
The third measure of magnitude is dollars. We did not use the
budget numbers from the CORM data call because it is unclear
what these reflect, i.e., labor only or labor and equipment or
contract or contract plus organic. As an alternative, we estimat-
ed the financial commitment in dollars by multiplying counts
of people by average loaded labor rates for organic and contrac-
tor personnel. Figure 4 shows the estimated dollars per year for
each service.

The rate used for organic personnel was $67,364, which is
a composite rate based on an assumed distribution of 80 per-
cent GS-12 and 20 percent GS-13 (1996 dollars) [5]. The rate
used for contractor personnel was $97,364, which is the median
of the rates that were quoted to us during the site visits. The
contractor rates ranged from $55,500 to $250,000 per year, and
this difference generally corresponded with the complexity and

uniqueness of the software being maintained. The difference
between organic and contractor rates should not be interpreted
to mean that contractors are more expensive. By and large, the
contractor labor force was maintaining more complex software
that required higher skills. More to the point, we did not
attempt to make such a comparison.

The financial commitment that we were able to account for
using this procedure is approximately $1.26 billion annually
($205 million for the Army, $543 million for the Air Force, and
$514 million for the Navy).

One of the reasons for characterizing DoD software main-
tenance was to shed light on the amount of software mainte-
nance that also is depot-level maintenance. It is of interest
whether software maintenance is depot level because it affects
the department’s compliance with the congressional restrictions
on how much depot maintenance work can be outsourced [6].

It was not possible to describe what fraction of the $1.26

billion in software maintenance is depot level. First, it was clear
from the interviews that, here also, there is a lack of consensus
over definitions. For example, the Air Force would generally
classify work on fighter aircraft embedded software as depot
maintenance. The Navy did not consider it so. Hence, inclusion
or exclusion of software maintenance when reporting compli-
ance with Title 10 U.S.C. limitations on depot maintenance
outsourcing was inconsistent. There was a lot of uncertainty in
this area, as were differences in counting rules. The Defense
Depot Maintenance Council Business Plan for fiscal 1996-
2001, which is compiled with service inputs, showed $275.3
million in contract depot-level software maintenance for fiscal
1996 and an additional 3.2 million depot labor hours of organic
support. By contrast, the AP-MP(A)-1397 Depot Maintenance
Cost System Report, under which depot-level software mainte-
nance was explicitly required to be reported, reflected $20.4
million for the same year.

Transition Patterns
Software for the application areas studied normally is developed
in the private sector. Although there were many transition pat-

June 1999 CROSSTALK The Journal of Defense Software Engineering 19

S
ite

 v
is

its

Figure 3. Personnel data from eight site visits compared to CORM data for
same sites.

0

200

400

600

800

1,000

Arm y Air Force Navy Tot al

Service

M
illi
on

s
 of
 do

lla
rs

 .

Total O rgani c Contract or

1,262

Figure 4. Estimated budget impact by service.

Mission-Critical and Mission-Support Software: A Preliminary Maintenance Characterization

Categor y

 Approxim ate m aintenance cost per
line of code per year

 Em bedded $110. 00

 Nonem bedded $5.60

 M issi on-suppor t $0.81

 Note: The m i ssi on-suppor t cost i s cal culated f rom North I sland ATE
TPSs, nonem bedded i s cal cul ated f rom CECO M data, and
em bedded is cal cul ated from B-1B data.

Table 3. Representative maintenance costs by category.

terns from original equipment manufacturer (OEM) to main-
tainer, three reasonably clear trends emerged:

• Pure organic maintenance is the exception and seems limit-
ed to mission-support software, such as ATE TPSs. Since
the organic and contract sectors have roughly the same
skills and would be expected to use the same software envi-
ronments, we conclude that, except for support software
such as ATE TPSs, there is significant difficulty and cost
associated with transferring the knowledge of the software
necessary for its maintenance. In addition to problems with
nondelivery of documentation or computer-aided software
engineering environments, this knowledge is probably tacit,
i.e., deep knowledge, rather than explicit—that is what
makes it hard to transfer. What we have found in practice
seems to support this conclusion. Support for this conclu-
sion also is found in the literature on technology manage-
ment in which David J. Teece [7], examining how compa-
nies arrive at make-or-buy decisions, noted that they often
choose what is easy to do rather than what is most impor-
tant to them.

• Organic maintenance of embedded software generally is
found only on older models of weapons systems.

• Where attempted, competitive contract support proved
both more economical and at least as effective as either
sole-source contract support or organic support.

• Based on the empirical evidence, i.e., the established transi-
tion patterns, planning for pure organic maintenance or
competed maintenance of embedded software is unrealistic.
It probably is more realistic to accept OEM involvement in
(and initial lead of) embedded software maintenance as an
accomplished fact.

• Competed commercial maintenance is viable for mission-
critical, nonembedded and for mission-critical, support
software.

Communication of Requirements
Communicating requirements clearly is an important part of
the software maintenance process. We found uniformity in this
process among organizations in the field survey. The typical
requirements process (Figure 5) follows these steps:

• A user initiates it through a problem report or a change
request. These reports or requests had almost as many
names and acronyms as organizations surveyed. The names
included System Deficiency Report, Standard Change
Form, Software Trouble Report, and Program Change
Proposal, or they could take the form of E-mail or letter
input. Interestingly, no one in the Air Force reported using
formal Technical Order 00-35-D54 deficiency reports,
though this technical order applies to all Air Force agencies
and organizations and provides for software deficiency
reporting [8].

• The requests typically are screened in a preliminary review
to determine the urgency of the problem or change request.
Urgent needs, e.g., safety of flight, are worked immediately.
The remainder of the requests are accumulated in what the
Space and Warning Systems Directorate colloquially termed
a job jar awaiting a scheduled review [9].

• The requests are periodically reviewed by an established
group, e.g., F/A-18 System Change Review Board. Prior to
the review, initial estimates of the magnitude of the effort—
which changes can be efficiently grouped, etc.—are accom-
plished by an engineering staff. The reviews often have user
participation or input. The group chartered to do the
review examines the requests in the job jar, prioritizes them,
and selects software changes to be implemented. Selection
is based primarily on priority and available funding.

• Requests not selected go back to the job jar for future con-
sideration. Typically, there are more requests than funds.

• Problem reports or change requests selected for implemen-
tation are assigned to a software version release.

Neither the size of the backlog of requirements nor the
specifics of particular requirements in the backlog drives the
budget. Rather, planned support takes the form of a level of
effort expressed in dollars or work force. Essentially, the agreed-
upon level of effort establishes a “cut line.” On a prioritized list
of software maintenance requirements, software changes above
the line are implemented; those below it are deferred to the job
jar for future funding opportunities. This behavior would indi-
cate that most software maintenance tasks are not of a time-crit-
ical nature. It is worth noting that level-of-effort funding is
found in commercial software maintenance practices [10].
(There are at least anecdotal indications that it also is found in
commercial software development.)

Operable Policy and Military Standards
A primary reason for this study was to understand what is need-
ed in the area of software policy. Consequently, this topic was
explored in some detail during the interviews. Policy can be
viewed from two different perspectives. First, it can be consid-
ered as representing required behavior, i.e., as formal, normative
policy, or the common view. Another perspective is to consider
policy as providing a framework of consistent expectations
regarding how affected parties mutually interact, i.e., as facilitat-
ing cooperative action [11,12,13,14]. Given the relative absence
of normative software maintenance policy, both perspectives

20 CROSSTALK The Journal of Defense Software Engineering June 1999

Figure 5. Requirements process.

Software Engineering Technology

were potentially important.
The most frequently cited documents were several military

standards that prescribed software engineering processes. Almost
universally, DOD-STD-2167 or DOD-STD-2167A were men-
tioned. Several respondents listed MIL-STD-498 as well. Two
sites mentioned MIL-STD-1679.3 These military standards
describe the documentation to be delivered, formal reviews to
be held, and tasks to be addressed in developing or maintaining
software. A fairly broad variety of other documents also were
listed. These included DoD (especially 5000 series), service, and
command regulations and instructions.

It was clear that military standards are the most important
source of policy for software maintenance. The single most
important reason for this was that the military standards pro-
vide a consistent framework of expectations for software devel-
opers and software maintainers—two communities that general-
ly have limited interaction during software development. It is
on the basis of what is described in the military standards that
the software maintenance community knows what to expect in
the way of software documentation. A considerable unease was
expressed in almost all of the interviews regarding the demise of
the military standards. This unease stems from the potential loss
of this consistency of expectation. One expectation was the
Navy’s F/A-18 program, which has successfully eliminated the
wall between developer and maintainer through the successful
use of integrated product teams (IPTs) [15, 16].

Not surprisingly, given the de facto status of the MIL-STDs
as policy, the ongoing elimination of MIL-STDs was an issue
for almost all of the organizations we interviewed.

Recommendations

We made two sets of recommendations: one set related to gen-
eral policy, and a second related to how DoD organizes for soft-
ware maintenance.

Policy
• Standardize the term software maintenance and define it to

include correction of defects, adaptation, and incremental
improvements. Exclude major modifications.

• Define software maintenance in weapons systems, auto-
matic test equipment, systems integration laboratories, and
space control categories as depot maintenance. All four cat-
egories are either embedded in or closely tied to mission-
essential platforms.

• Make routine the consistent reporting of depot-level soft-
ware maintenance, as defined above, in the AP-MP(A)-
1397 Depot Maintenance Cost System to provide a basis
for reporting to Congress and management of depot-level
software maintenance generally.

• Invest in process improvement. Consider mandating mini-
mum process capability levels for both organic and contract
activities that perform software maintenance.

Organizing for Software Maintenance
• To achieve scale economies, consolidate smaller software

maintenance activities into software maintenance centers of

excellence. For each center of excellence, keep or put in
place a strong central management structure.

• For embedded software, plan for long-term OEM mainte-
nance. However, it is important to retain enough work
organically to maintain smart-buyer capability.

• For mission-critical, nonembedded software, continue con-
solidation using the government-managed, contractor-per-
formed, centralized-maintenance model employed by the
Army Communications Electronics Command and the Air
Force Space Systems Support Group.

• For software, such as automated test equipment, test pro-
gram sets where the software engineering knowledge is rela-
tively easy to transfer. Consider competition to reduce
costs. ◆

About the Authors
Elizabeth K. Bailey Clark co-founded Software Metrics, Inc. in
1983. She is a primary contributor to Practical Software
Measurement (PSM) and is a qualified PSM instructor. She has
worked with numerous clients to implement software measure-
ment. She was a primary contributor to the Software
Engineering Institute’s core measures. She is currently working
with Barry Boehm and Chris Abts from the University of
Southern California to develop and calibrate COCOTS, a soft-
ware COTS integration cost model. She has a bachelor’s degree
from Stanford University and holds a doctorate from the
University of California at Berkeley.

Software Metrics, Inc.
4345 High Ridge Road
Haymarket, VA 20169
Voice: 703-754-0115
E-mail: bkbailey@erols.com

James A. Forbes is a certified professional logistician with more
than 25 years of experience. As an Air Force officer, he had
extensive experience assessing the impact of technology on
organizations and managing technology-driven change. In the
private sector, he managed logistics programs for both
Technology Applications, Inc. and Analytic Sciences, Inc. before
coming to the Logistics Management Institute (LMI). At LMI,
he has been a principal researcher in studies of depot mainte-
nance, total ownership cost, and logistics-related information
systems.

E-mail: jforbes@lmi.org

Emanuel R. Baker is president of Software Engineering
Consultants, Inc., Los Angeles, Calif., and a principal officer of
Process Strategies, Inc., a software consulting firm based in Los
Angeles and Walpole, Maine. The author or co-author of several
articles on software quality, software quality management, soft-
ware engineering, and software process improvement, he has 40
years of engineering experience, 25 of which has been spent as a
software engineer and as a consultant to software development
organizations. He held a number of management positions and
was manager of the Product Assurance Department of Logi-con’s
Strategic and Information Systems Division. He has played a

June 1999 CROSSTALK The Journal of Defense Software Engineering 21

Mission-Critical and Mission-Support Software: A Preliminary Maintenance Characterization

22 CROSSTALK The Journal of Defense Software Engineering June 1999

major role in the development of software quality standards for
both industry and the Department of Defense. He has a bache-
lor’s degree in engineering (1956) from New York University,
New York City, a master’s degree in mechanical engineering
(1958), and a master’s (1974) and a doctorate (1981) in educa-
tion from the University of Southern California at Los Angeles.

E-mail: erbaker@ix.netcom.com

Donald W. Hutcheson has extensive experience in engineering
development, flight testing, program management, senior tech-
nology management, and executive management of DoD
weapons systems. He joined LMI in 1994 as a logistics analyst.
He has a bachelor’s degree in mechanical engineering and a
master’s degree in engineering. He is a member of the DoD
Acquisition Corps. certified in program management. While at
LMI, he has performed analysis in various areas of logistics
reform, co-wrote three reports, and was a recipient of the LMI
1996 President’s Award.

Weapons Business Development
The Boeing Company
P.O. Box 516 MC S500-2025
St. Louis, MO 63166-0516
Voice: 314-925-5633
Fax: 314-925-7758
E-mail: donald.hutcheson@mw.boeing.com

References

1. Lyytinen, Kalle J. and K. Klein Heintz, “The Critical
Theory of Jurgen Habermas as a Means for a Theory of
Information Systems,” Research Methods in Information
Systems, E. Mumfored, et al., ed., Holland: Elsevier Science
Publishers B.V., 1985, p. 221.

2. Kelle, Udo, “Theory Building in Qualitative Research and
Computer Programs for the Management of Textual
Data,” Sociological Research Online, Vol. 2, No. 2,
http://www.socresearchonline.org.uk/socresonline/2/2/1.
html. 3.9.

3. Boehm, Barry W., Software Engineering Economics, Prentice-
Hall, 1981.

4. Goethert, Wolfhart B., Elizabeth K. Bailey, and Mary B.
Busby, Software Effort and Schedule Measurement: A
Framework for Counting Staff-Hours and Reporting Schedule
Information, CMU/SEI-92-TR-21, ESC-TR-92-021,
Carnegie Mellon University, Software Engineering Institute,
Pittsburgh, Pa., September 1992.

5. The composite organic rate is a weighted average of the
rates shown for GS-12s and GS-13s in Table A26-1 of the
Civilian Standard Composite Pay Rates by Grade, Air Force
Instruction 65-503, May 1996.

6. 10 U.S.C. 2466, “Limitations on the Performance of
Depot-Level Maintenance of Material,” requires that not

more than 50 percent of the funds available in a fiscal year
to a military department or agency for depot-level mainte-
nance and repair may be used to contract for performance
by non-federal-government personnel.

7. Teece, David J., “Technological Change and the Nature of
the Firm,” Technological Change and Economic Theory,
1988, pp. 256-281.

8. U. S. Air Force, TO 00-35D-54, USAF Deficiency
Reporting and Investigation System, Jan. 15, 1994, pp.
1-1, 1-4, and 1-5.

9. Space and Warning Systems Directorate, Operating
Instruction 33-7, Software Maintenance — Acronyms and
Terms, Vol. 2, Sept. 15, 1995, p. 6. The term job jar is used
in this operating instruction.

10. Abran, Alain and Hong Nguyenkim, “Analysis of
Maintenance Work Categories Through Work
Measurement,” Proceedings of the 1991 IEEE Conference on
Software Maintenance, Sorrento, Italy, p. 105.

11. Forester, J., “Selling You the Brooklyn Bridge and
Ideology,” Theory in Society, September 1981, p. 746.

12. Forester, J., “The Policy Analysis-Critical Theory Affair:
Wildavsky and Habermas as Bedfellow?” Journal of Public
Policy, No. 2, 1982, p. 151.

13. Habermas, J., The Theory of Communicative Action, 1984,
Vol. 1, p. 308.

14. Seidman, S., ed., Jurgen Habermas on Society and Politics:
A Reader, Beacon Press, Boston, 1989, p. 154.

15. Bailey, Elizabeth K. and Beth Springsteen, The F/A-
18E/F: An Integrated Product Team (IPT) Case Study,
Institute for Defense Analyses, Alexandria, Va., April 9,
1998.

16. Springsteen, Beth, Elizabeth K. Bailey, Sarah H. Nash,
and James P. Woolsey, Integrated Product and Process
Development Case Study: Development of the F/A-18E/F
(Draft Final), Institute for Defense Analyses, Alexandria,
Va., April 22, 1999.

Notes
1. The study was performed pursuant to Department of

Defense Contract DASW01-95-C-0019.
2. The findings presented are extracted from Logistics

Management Institute Report LG518T1, November 1997
and represent the more significant findings of the study.
For more detailed findings, please examine the report.

3. MIL-STD-498 replaced both DOD-STD-2167A (for
weapons systems and other mission-critical applications)
and DOD-STD-7935A (for automated information sys-
tems) and brought these two areas together under one stan-
dard.

Software Engineering Technology

